

EPFL MICRONANOFABRICATION ANNUAL REVIEW MEETING

EPFL MICRONANOFABRICATION ANNUAL REVIEW MEETING

WELCOME & THANKS

- ★ Welcome to the 14th edition of the CMi MicroNanoFabrication Annual Review Meeting
- Many thanks for your participation
- 567 participants registered (with 40% from outside of EPFL, 25% from companies)
- ***** +33% compared to 2012

OUTLINE

- Users
- Projects
- Technology
- × Tools

EPFL Engir	neering Sc.	Basic Sc.	Life Sc.	Ext. Ac.	Companies
STI-CBT-LBO	STI-IMT-LMIS1	SB-ICMP-LASPE	SV-BMI-LNMC	CERN	Abionic
STI-CMI	STI-IMT-LMIS2	SB-ICMP-LOEQ	SV-BMI-LSYM	CSEM	Aleva
STI-IBI-CLSE	STI-IMT-LMIS4	SB-ICMP-LPMC	SV-GHI-UPKIN	ETHZ-Basel	Asulab
STI-IBI-LBEN	STI-IMT-LMTS	SB-ICMP-LPN	SV-IBI-LMBM	FEMTO-DMA	Axetris
STI-IBI-LBNC	STI-IMT-LO	SB-ICMP-LPQM1	SV-IBI-UPDEPLA	Metas	Biocartis
STI-IBI-LBNI	STI-IMT-LOB	SB-ICMP-LQM	SV-IBI-UPLUT	Uni-Basel	Bruker
STI-IBI-LHTC	STI-IMT-LPM	SB-IPSB-LCB	SV-IBI-LDCS	Uni-Fribourg	Debiotech
STI-IEL-GR-JPC	STI-IMT-LPMAT	SB-IPSB-LPMV			Karmic
STI-IEL-GR-SCI-IEL	STI-IMT-LSBI	SB-ISIC-LEPA	ENAC-IA-LIV		Lemoptix
STI-IEL-LANES	STI-IMT-NAM	SB-ISIC-LIMNO	ENAC-IIE-DISAL		MCH-processing
STI-IEL-LSM	STI-IMT-OPT	SB-ISIC-LPI			Nanoworld
STI-IEL-NANOLAB	STI-IMT-SAMLAB				Novagan
STI-IGM-LFMI	STI-IMX-LC				Oerlikon
STI-IGM-LTCM	STI-IMX-LMM		IC-ISIM-LSI1		Qwane
STI-IMT-ESPLAB	STI-IMX-LMSC				Rolex
STI-IMT-GR-SCI-HL	STI-IMX-LP				Sercalo
STI-IMT-LAI	STI-IMX-LTC				Sigatec
STI-IMT-LAPD	STI-IMX-LTP				SilMach
STI-IMT-LIS	STI-IMX-SUNMIL				Soitec
235	(38)	47 (11)	32 (9)	17 (8)	29 (19)

Total: 360 users (+17%)

Total: 85 labs or companies

- ★ For the next 5 years we expect an annual growth of 10%
- **x** Total: 360 users (+17%)
- **x** Total: 85 labs or companies

2002-2012 **Average Cleanroom Occupancy in the daytime**

- We observe a very regular growth of the average cleanroom occupancy over the years
- Occupancy peaks with not less than 40 to 45 Users simultaneously

Fees paid by the Users

- Users's fees growth over the last 14 years
- The fees cover 25% of the total costs (8 MCHF/year)

ABSTRACTS IN 2013

x 219 abstracts (+6%)

USERS & PROJECTS: THE REAL VALUE

- * The Users and their Projects are the real value of the CMi
- * The CMi is not producing wafers but it is participating to produce top quality PhD students
- * The increase of the Users is the key indicator of the success of the CMi

- Large variety of processes
- World class equipment
- Dedicated staff

TRENDS IN MICRO- NANO- TECHNOLOGIES

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

HISTORICAL MILESTONES

IC & MEMS 1998

- CMi created in 1998 & Cleanroom opened in March 1999
- Basic Microelectronics processes
- MEMS processes like Deep silicon etching & SU-8

Nano 2007

- Electron Beam Lithography acquired in 2007
- Focused Ion Beam in 2004
- Atomic Layer Deposition in 2011

Bio & New Materials 2010

- Cleanroom extension opened in 2010 for more flexibility and cheaper access
- Operated now in 24/7 mode since 2012
- PDMS, SU-8, Chemistry, Metrology, Non-conventional processes

Materials Diversity 2013

• Ion Beam Etching: a key instrument to pattern a huge variety of exotic materials

Renewal & Capacity 2013 & 2014

- Photolithography: Mask Fabrication Coater & Developer Mask Aligner
- PVD
- Dry Etching

CLEANROOM EXTENSION

- CMi BM+1 was inaugurated 2 years ago
- CMi BM+1 is very instrumental in developing new fields of activities

CLEANROOM EXTENSION

CMi BM+1

CMi BM+1 mainly dedicated to:

- Metrology
- Wet Chemistry
- Photolithography
- PDMS processing
- × Thin films
- × Backend activities
- Exploratory processes

× CMi BM-1

Total Surface	NEW surface
1300m ²	300m ²

- CMi BM+1 is now open 24/7 (except for wet chemistry)
- Well equipped with a wide variety of processes

- Alliance Concept DP650 Sputter (budget 2011)
- Edwards Auto 306 Joule Evaporator (Prof. Lacour & CMi)
- SPTS APS LPX Dielectric RIE (Prof. Kippenberg)
- XeF2 etcher (Prof. Kippenberg)
- <u>Jipelec JetFirst 200 RTP</u>
- Toho FLX 2320-S Stress Measurement System
- Wire Bonder (Prof. Popovic)
- ★ Idonus chip to chip bonder (Prof. Radenovic & CMi)
- Idonus Shadow Mask Aligner (Prof. Lacour & CMi)
- ★ LIFT Laser Induced Forward Transfer (Prof. Brügger)
- Veeco IBE NEXUS IBE350Si (installed in 2013)
- ★ ICMP Kenosistec KS500C Dielectric Sputter
- ICMP Süss MA6 Mask aligner
- ★ ICMP Oxford SiC Process upgrade (Aleva)
- × ICMP X-Rays
- ICMP Labspin Coater

Alliance Concept DP650 Sputtering tool

Edwards Auto 306 Joule Evaporator (Prof. Lacour & CMi)

SPTS APS ICP Dielectric RIE (Prof. Kippenberg)

> > 550 nm/min etch rate in SiO2

Jipelec JetFirst 200 RTP

XeF2 etcher (Prof. Kippenberg)

Toho FLX 2320-S Stress Measurement System

Wire Bonder (Prof. Popovic)

Fraunhofer Laser Induced Forward Transfer (Prof. Brügger)

Laser Induced Forward Transfer (LIFT):

- accurate deposition (10-80um spot size)
- * thermally and mechanically sensitive material
- × proteins, living cells, bioactive substances, ...

Idonus chip to chip bonder (Prof. Radenovic)

Idonus Shadow Mask Aligner (Prof. Lacour)

Presentation by Veeco This afternoon

- 350mm ion beam diameter
- x 1.5% uniformity on 100mm wafers
- × SIMS for endpoint detection
- World class tool
- Adapted for milling a huge variety of materials
 - 100mm & 150mm wafer size compatible

Veeco IBE NEXUS IBE350Si (Installed in 2013)

Etch Rates of Common Materials utilizing 700 eV			
Ar ions (1.2 mA/cm2) at Normal Incidence			
<u>Material</u>	Etch Rate (Angstroms / Minute)		
Au	3040		
Pt	1310		
Pd	1780		
Cu	1670		
Al	1060		
Ti	400		
TiW	610		
Cr	810		
Cr ₂ O ₃	310		
Al_2O_3	320		
NiFe (81/19)	850		
TiN	380		
Photoresist (AZ)	480		
LiNbO ₃	720		
AITiC	260		
Si	750		
SiO ₂	720		
Ta	540		

- Etch rates of common materials
- → selectivity against PR

NEW TOOLS ACQUIRED IN 2012 (ICMP)

Kenosistec sputter KS500C

For dielectric Bragg reflectors

Süss MA6

X-Rays

Labspin coater

INVESTMENT PROPOSAL - 2013

×	Thin Film Evapor	rator for CMi BM+1	Ordered
---	------------------	--------------------	---------

Direct Writing System (replacement 12 years)
PO 2013

× FTIR PO 2013

➤ Photoresist Coat & Develop (remplacement >20 ans)
PO 2013-2014

Mask Aligner (16 years)PO 2013-2014

X ICP RIE Metal (17 years)
PO 2014

- ★ Thin Film Evaporator EVA 760 Alliance Concept
 - + Ordered
 - + To be delivered in January 2014 and installed in CMi BM+1

- New Direct Writing Laser
 - + Replacement of our 12 years old tool
 - Discontinuance of Spectra Physics Water-Cooled Ion Lasers
 - + Writing errors due to electronics obsolescence
 - + Conversion issues due computer & software obsolescence
 - + Mix & match not possible due to stage & writing inaccuracy

- The new generation of tools show spectacular progress in many aspects:
 - + speed
 - + resolution
 - + stitching
 - + conversion software
 - + ...

- New automatic Coater Developer to backup:
 - + Rite Track > 20 years
 - + EVG 150 permanently overbooked

- New Mask aligner:
 - + Replace the MA150 20 years old
 - + Backup the MA6 permanently overbooked

- New RIE Metal Etcher
 - + Replace our STS which is 17 years old

- Very exciting program
- 13 presentations spanning an exceptionally broad range ×
- One common point: ×
 - + MicroNanoFabrication
- Don't forget to visit the posters
- WiFi code at the end of the participants list

MicroNanoFabrication Annual Review Meeting

Date: Tuesday May 7⁽ⁱⁱ⁾, 2013 Time: 09h30 – 17h00 Place: EPFL, Forum Rolex Learning Center, RLC E1 240

	ra	

Program:	
09h30-10h00	Coffees and croissants, distribution of badges and proceedings
10h00-10h05	Benoît Deveaud-Plédran, Dean of Research, Welcome address
10h05-10h15	Philippe Renaud and Philippe Flückiger (http://cmi.epfl.ch), Introduction
10h15-10h35	$\textbf{\textit{Albert van den Berg (http://www.utwente.nl/ewi/bios)}, Micro- and nanofabrication for lab on a chip}$
10h35-10h55	Anna Fontcuberta i Morral (http://imsc.epfl.ch), III-V nanowires for solar cells
10h55-11h15	Peter Pfluger (http://www.tronicsgroup.com/), Towards new devices through new MEMS/NEMS fabrication technologies
11h15-11h45	Break
11h45-12h00	Romuald Houdré (http://loeq.epfl.ch), Hollow photonic crystal structures for sensing and optical trapping
12h00-12h15	Davide Balma (http://lc.epfl.ch), PZT thin films for fast and low-voltage MEMS applications
12h15-12h30	André Mercanzini (http://www.aleva-neuro.com), From zone 1 to the human brain: How Aleva developed a medical device at CMi
12h30-14h00	Lunch & Poster Session
14h00-14h15	Matthias Lutolf (http://lscb.epfl.ch), Engineering hydrogel microfluidics for stem cell biology
14h15-14h30	Victor Brasch (http://k-lab.epfl.ch), Frequency comb generation in silicon nitride microresonators
14h30-14h45	Michael Fey (http://www.bruker.com), NMR on the micro scale: Challenges and solutions
14h45-15h15	Break
15h15-15h30	Herbert Shea (http://lmts.epfl.ch), Artificial muscles on a chip
15h30-15h45	Ivan Minev (http://isbi.epfl.ch), Soft neural electrodes for mechanically challenging applications
15h45-16h00	Patrice Minotti (http://www.silmach.com), Airflow control using distributed servoMEMS actuators
401-00-401-45	Adrian Devashayam (http://www.veeco.com), Patterning of magnetic sensors and
16h00-16h15	piezoelectric devices by ion beam etch
	10h00-10h05 10h05-10h15 10h15-10h15 10h15-10h35 10h35-10h55 10h55-11h15 11h15-11h45 11h45-12h00 12h00-12h15 12h15-12h30 12h30-14h00 14h00-14h15 14h15-14h30 14h30-14h45 14h45-15h15 15h15-15h30 15h30-15h45

THANKS FOR YOUR ATTENTION

ENJOY THE CONFERENCE

